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The unsteady motion of perfect gas is considered for considerable values of the
characteristic time. The unperturbed gas is assumed quiescent at zero pressure
and of constant density, while in the perturbed motion region the energy and
momentum of gas are assumed constant, In the first approximation the motion
is self-similar and corresponds to a strong point explosion. The gasdynamic
functions that define the final momentum are of asymmetric form over the
space of corrections to the self-similar solution, The use of the momentum
integral, which is valid for the linear problem, simplifies the problem analy-
sis.

The problem of motion of perfect gas at sudden release of energy at a point has a
self-similar solution which was first obtained in [1 —3], Considerable attention was
given to the linear problems associated with the linearization of equtions of gasdynam-
ics related to the solution of the problem of strong explosion. Thus the entropy integ-
ral valid for any approximation was determined in [4 —6] for linear equations, In
addition to the entropy integral for linear systems a number of integrals valid for some
particular perturbations was obtained in [7,8]. These integrals were the corolary of
some law of conservation valid for equations of gasdynamics [8]. Among the integrals
determined in [7] is the momentum integral, A detailed study of solutions containing
the momentum integral was carried out in [9, 10] for plain and axisymmetric motions
in the first approximatfon, Derived solytions provided a good interpretation of pertur-
bations downstream of a plane or arbitrary body in a hypersonic stream, associated
with the lift acting on the body, Below, a perturbed solution is derived for the basic,
centrally symmetric motion. That solution defines the final momentum of gas, which
does not vary with time and for which the momentum integral in [8] is valid,

Let us consider a perfect gas with constant specific heats ratio % (1 <<% << 2).
We denote the gas density, pressure, and temperature by P, p, and T, respectiv-
ely, and introduce a spherical system of coordinates 7, ¢, ¥. Projections of the veloc-
ity vector V on axes of this system are denoted by corresponding subscripts, as follows:
Uy, Vg, and ve.

We assume that the unsteady motion of gas is'induced by an explosion and that
momentum [, directed along axis z, from which we shall measure angle @, is
imparted to the gas in addition to energy. Let the unperturbed gas be cold and quie-
scent (7", = 0 and V;=10). The assumptions about unperturbed gas parameters
make it possible to conclude that during the whole motion process in the perturbation
region energy £ and I, remain constant at any instant of time f.

The subsequent analysis is restricted to the asymptotic solution for ¢ -+ oo, In
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the absence of momentum /, = 0 the solution of such problem is self-similar
[1—3]. According to it a spherical shock wave r, = (bt)*/s propagates over the
unperturbed gas. Let us assume that in the presence of momentum [, =50 the
position of the shock wave for £ —- % may be defined in the form

=Gty [1 +t2m/5R (g, ) +...], m>0 (1
where parameter m and function R are selected so as to satisfy the condition [, =
const = 0. Function R (¢, ®) is assumed to be twice differentiable and R (0,
?) = R (2n, §),which implies that it can be expanded in an absolutely and uniform-

ly convergent series
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where @;x and b;; are coefficientsof the expansion of function R, P,* (cos )
are associated Legendre functions, and P,* (cos #) cos (kg + ;) is a spherical
function of the first kind which is the solution of the differential equation in partial
derivatives [11]
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A shock front expansion similar to (1) was used in [12],

Since the problem of perturbations is linear, we take from the spherical function
series a term of an arbitrary ordinal number and write R = Y ,* (¢, 9).. The
parameters of gas that correspond to this perturbation of the shock wave are sought in
the form

b= o O R ) S (W Y 4 @
- 4 ls p=Sm2m /Sy (£) —e ﬁ.z_
Uq;——my t am()m 3 "
4 - .\ Y
vy = — _S_mbz/l il 2m‘/5wm("‘)T+"'
p=2 191 g +t2m/5gn (WY, +. ..]

p= §~—-——--———5 W )p1b4/tt—~°_/5 (B (M) +t-2mish, W YF + .. ]

A= r](bt)s

The first approximation functions f, g, and A specify the self-similar motion that
defines a strong point explosion [1 —3]. Let us consider the second approximation fun-
ctions with index m. The Rankine — Hugoniot conditions at the shock wave front(1)
make possible the determination of initial conditions at point A = 1

(4)
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Substituting expansions (2) into the system of Euler's equations and retaining terms
with like powers of ¢, we obtain a system of five equations for the second approxima-
tion functions. But functions U and w,, are solutions of the same ordinary differen-
tial equation, Taking into account that the initial conditions (4) for functions %, and

w,, are the same, we conclude that u,, (A) = w,, (A).

Retaining subsequently only %, (A) and allowing for equality (2), we obtain the

system of equations
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Among the shock front perturbation we consider those that provide the final contri-

bution to the gas momeptum along the Zz-axis when £—- 00, The expression for
I, is of the form

S S pvrisin 8drddde, v,=v,cos® — vy sind
er

Taking into consideration expansions (3) and the formula for the spherical function
Y,* = p,* (cos ®)cos (kg + by;), we obtain

4 : (6)
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To select the perturbations that define the momentum J; it is necessary to set
k = 0, since it is only then that the integral in variable ¢ is nonzero. The const-
ant b;; may, without loss of generality, be set equal to zero. Let us consider the
integral in §; for k = 0O the associated Legendre functions become Legendre poly-
nomials P; (cos ©). Taking into account that Pp (cos §) = cos ¥ and, also, the
orthogonality of Legendre polynomials, we conclude that the integral in ¢ is non-
zero only for I = 1. We select m so that the expression for [, is independent of
time, This yields m = 3/,.
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Note that for [ =1 and m == 3/, the system of Eqs. (5) admits the momentum

integral
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Using conditions (4) we obtain that the constant Cy = 0. Eliminating in the syst-
em of Eqs, (5) function w,;, using equality (7) and discarding the third of Egs. (5),
we obtain a system of three equations for the determinations of functions f:/,, g/,, and
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hs;, This system was solved numerically for x = 1.4. Curves of these functions
are shown in Fig,1. For A — Q all functions are of oscillatory character, but while
gy, and hs, tend to zero fy, and Wy, increase indefinitely; however, in spite
of this the integral I,z () tends to a finite value equal -1.0521. Hence the motion

with momentum
I, = =~ 0.1389 Cp b'h (Co >0)

directed along the 2 -axis corresponds to the perturbation of 4 centrally symmetric
shock front (1) with  t~¥"/ R (@, ®) = Cot~"/»cos & . Let us prove the conver-
gence of integral I, (A) when A — O For this we analyze the asymptotics of
second approximation functions for A — 0 and any amitrary * (1 <% < 2).
Since these functions satisfy the system of third order differential equations, the com-
plete solution of that system consiats of the sum of three linearly independent solutions.
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The asymptotics of two linearly independent solutions are of an oscilatory charac~
ter
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while the third linearly independent solution is of the power function kind
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where C,, C3, and C, are arbitrary constants which in a specific probiem are de-
termined by the input data (4); ky is a coefficient in the expansion of density g for

A—0, and a; + ia,, ot; — iGy, and ag (i is the imaginary unit) are roots of
the cubic equation

7% Bt 4 17 — 14
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Curves representing the dependence of a,, @3, and @3 on % are shown in Fig, 2,
For ¥ =14 wehave o= —5.8104,c,= 28150, and 5= —0.6298, These
curves show that «, < a, in the whole range of % variation, hence asymptotics (8)
are higher than asymptotics (9), and the second approximation functions for A — { are
always of an oscillating character of period L = (¢¥/%2__ 1)), which vanishes togeth-
er with the variable A.

Asymptotics (8) imply that the integrand in formula (6) tends to zero when A — 0,
which shows that the entire integral (6) is convergent, and that [, (0), exists for any

® , hence a motion with momentum

16C,pyb"*
I = gy U+ 12 (0))
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directed along the 2 -axis corresponds to perturbation (1) of the form Cot='h cos §.
The dependence of 1 <+ I,; (0) on % is shown in Fig,3. Since 141, (0) < 0,
hence the direction of momentum [, is opposite to the relative shift of the shock
front along the z -axis which is defined by the quantity C,t~*s. This situation is
not unusual: the phenomenon of irregular shock wave shift occurs in asymmetric hyper-
sonic flow past a circular cone [13],
We point out a further importnat property of the derived solution, namely, that for
A ~» O the perturbed pressure in conformity with (7) also tends to zero. This makes
it possible to continue the solution in the region close to the center, where pressure
is almost invariant with respect fo space variables, Such continuation can be effected
with allowance for viscosity and heat conduction, as was done in {9] for plane-parallel
motions with constant energy and momentum,
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