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The unsteady moffon of perfect gas is considered for considerable values of the 
characteristic time. The unperturbed gas is assumed quiescent at zero pressure 
and of constant density, while in the perturbed motion region the energy and 
momentum of gas are assumed constant. In the first approximation the motion 
is self-similar and corresponds to a strong point explosion. The gasdynamic 
functions that define the final ~rnen~rn are of asymmetric form over the 
space of corrections to the self-similar solution. The use of the momentum 
integral, which is valid for the Linear problem, simplifies the problem analy- 
sis. 

The problem of motion of perfect gas at sudden release of energy at a point has a 
self-similar solution which was first obtained in [l-31, Considerable attention was 
given to the linear problems associated with the linearization of equtions of gasdynam- 
its related to the solution of the problem of strong explosion. Thus the entropy integ- 
ral valid for any approximation was determined in [4 -6 3 for linear equations. In 
addition to the entropy integral for linear systems a number of integrals valid for some 
particular perturbations was obtained in [‘7,8J. These integrals were the corolary of 
some law of conservation valid for equations of gasdynamics [8]. Among the integrals 
determined in [7] is the momentum integral. A detailed study of solutions containing 
the momentum integral was carried out in [9,10] for plain and axisymmetric motions 
i: the first approximatfon. Derived so4tions provided a good interpretation of pertur- 
bations downstream of a plane or arbitrary body in a hypersonic stream, associated 
with the Lift acting on the body, Below, a perturbed solution is derived for the basic, 
centrally symmetric motion, That solution defines the final morn~~rn of gas, which 
does not vary with time and for which the momentum integral in [S] is valid, 

Let us consider a perfect gas with constant specific heats ratio x (1 < x < 2). 
We denote the gas density, pressure, and temperature by p, p, and T, respectiv- 
ely, and introduce a spherical system of coordinates I*, Al+ 6. Projections of the veloc- 
ity vector V on axes of this system are denoted by corresponding subscripts, as follows: 

ur, v,, and vs. 
We assume that the unsteady motion of gas is ‘induced by an explosion and that 

momentum ii directed along axis z, from which we shall measure angle 6, is 
imparted to the gas in addition to energy. Let the unperturbed gas be cold and quie- 
scent (T, = 0 and VI= 0). The assumptions about unperturbed gas parameters 
make it possible to conclude that during the whole motion process in the ~r~rbation 
region energy E and 1, remain constant at any instant of time t . 

The subsequent analysis is restricted to the asymptotic solution for t + 00. In 
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the absence of momentum 1, = 0 the solution of such problem f se&similar 
Cl -31. According to it a spherical shock wave r, = (bt)‘/s pro&agates over the 
unperturbed gas. Let us assume that fn.tlze presence of momentum f, # 0 the 
position of the shock wave for t + 00 may be defined in the form 

r,=(bt)“~[1+t-2m’3R(~, zrE)+...], m>O (11 
where parameter m and function R are selected so as to satisfy the condition f, = 

const # 0. Function R (cp, fi) is assumed to be twice differentiable and R (0, 
6) = A (2n, 43)) which implies that it can be expanded in an absolutely and uniform- 
ly co5vergent series . 

Wkte +k and b,l, are coefficients of ti expa~on of fwtction R, PtK fcos +) 
are associated Legen& functions, and P,” (cos a) cos (kq -I- blk) is a spherical 
function of the fimt kind which is the solution of the diffenntial equation in partial 
derivatives fl;t] 

SYf 
dips +sin@&(siafi~) + 2 (I + 1) sina4Y,k = 0 (21 

A shock fmat expansion similar to (1) was used in [X2]. 
Since the problem of pertnrbationt is linear, we take from the spWica1 function 

series a term of an arbitrary ordinal number and write R = 3’1’ (sp, 6).. The 
parameters of gas that corntpond to this perturbatior~of the shock wave are sought in 
the form 

4 
v, = 

5(X$_ 1) 
P’* P/s [f (h) + t--/5 f* (n) Y,k + , . .] 

4 aY,” 
vcp = - 

5(x+ $1 
We rf*-2=/6Et, (a) .&JJ- F + * . . 

(31 

The first approximation functions f, g, and h specify the self-similar motion that 
definea a strong point explosion [l-31. Let IM corr&ler the second approximation fun- 
ctions with index m. The Rank&e - Hugo&t condttposas at the shock wave fro&( 1) 
make possible the determination of initial condit&us at point h = 1 

fm= x--7 -m, um=Ir w,=l 
2(x+ 1: 
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Substituting expansions (2) into the system of Euler’s equations and retaining terms 
with like powers of t, we obtain a system of five equations for the second approxima- 
tion functions. But functions U, and w,, are solutions of the same ordinary differen- 
tial equation, Taking into account that the initial conditions (4) for functions u,-,, and 

w, are the same, we conclude that U, (A) = W, (h). 

Retaining subsequently only w,,, (3L) and allowing for equality (2), we obtain the 

system of equations 

( f %;I x)g.*+x+d$L +[i&(3+2m;(n+1)]gfm+ 

( f -*~~)g~+[~-(3+2m~(x+1)]gw,,_-~h,=0 

Among the shock front perturbation we consider those that provide the final contri- 
bution to the gas momentum along the z -axis when d + 00 . The expression for 

I, is of the form 

3P x 78 

I, I yz j j j pv,? sin 6dr d6 dq, v, = v, cos G - v+ sin 6 

Taking into consideration expansions (3) and the formula for the spherical function 

Ylk = plk (cos 6)cos (kq + bkr), we obtain 

I,= _L.__ ,,,.,,l.,,,,j cos (kcp + blk)dq 5 Plh’ (cos6) x 
(6) 

0 

cos 6 sin6 d6 [ 1 + fy I,1 (h) ] 
4 

To select the perturbations that define the momentum lz it is necessary to set 
k = 0, since it is only then that the integral in variable v is nonzero. The const- 

ant bIK may, without loss of generality, be set equal to zero. Let us consider the 
integral in 6; for k = 0 the associated Legendre functions become Legendre poly- 
nomials PI (cos 6). Taking into account that PI (cos 6) = cos 6 and, also, the 

orthogonality of Legendre polynomials, we conclude that the integral in 6 is non- 
zero only for 1 = 1. We select m so that the expression for I, is independent of 
time. This yields m = 3/2. 
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Note that for I = I and m P */s the system of Eqs. (5) admits the rno~~rn 
integral 

h W/* + fgve - %wd - [~fgfv, + 2f2g?h - 
4&m/, i- (x - 1) hl I (x + 1) = Cr / Aa (7) 

Using condiUons(4) we obtain that the constant CI = 0. Eliminating in the syst- 
em cd W. (5) fimc~on uhf, using equality (7) and discarding the third of ELI. (51, 
we obtain a system of three equations for the determinations of ~neti~ fn.tr, gaf,, and 

5 

-5 

-IO 

Fig. 3 

bjp. This system was solved numerically for x = 1.4. Curves of these fnnctions 
are shown In Fig. 1. For h + 0 all functfous are of cacfllatory character, but while 
gn/, and hi, tend to zero f.,, and W~J, increase indefinitely; however, in spite 

of this the integral I,r (A) tends to a finite value equal - 1.0521, Hence the motion 
with momentum 

f, = - 0.1389 C*p,tr”‘* (Co > 01 

directed aioug the z -axis corres~ds to t$e p&wbat.iin of a centrally symmetric 
shock front (1) with PSrnl* R (cp, a) = C,f”fa co9 6 . Let us prove the cormr- 
gence of fnttgral IzI (A) when 1” + 0 ‘. For this we analyze the asym$aQticr of 
second approximation functions for h 3 0 and any arbitrary X (f < X < 2). 

Since these fimctbns satisfy the system of third order differ@utial Wuatlonr, the com- 
plete solution of that system consists of the sum of three itneWly ~~~~t rcfuti~. 
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The asymptotics of two linearly independent solutions are of an oscilatory charac- 
ter 

fs,, = @” - 2 - I) {[ax + z ;-$ ] czo (h) + c&@)(M} ha’ + * . . (8) 

Da/, = - w-i)@--i) 
G?sck, if 

at2__2+ 5x-2 or+ x+2 
*2(x-f) x Go@)+ 1 

@a 2% + [ ;:;,7 cso(h))~~‘+. . . 
hw* =C*&)h~~+*.., /3~=a*-+-(4-?c)/(%--q 

Go &I = C2 cm (a, In h) + Cs sin (a, In h), Cso (A) = 
- C2 sin (a~ In h) + Cs cos (a2 In h) 

while the third linearly independent solution is of the power function kind 

(9) 

hl, - cr 
@=-IF 7x-6 

6x= G-r- 2(x-I) as -I- 
3@+2x-2 hYSs_ 

2(X- 1)s I 
. . . 

Ys =as+(2+Nf(~-Q 

where cs, cs, and C’s are arbitrary constants which in a specific problem are de- 
termined by the input data (4); kl is a coefficient in the expansion of density g for 

h-t 0, and u1 + iuz, al - ia,, and CQ (i is the imaginary unit) are roots of 
the cubic equation 

aa + 
7x 

2(x_t) o2 + 6+&!~;‘4 a+& =o 

Curves representing the dependence of q, as, and as on x are shown in Fig. 2. 
For x = 1.4 we have a,= -5.81Oi,us= 2.8150, and as = -0.6298. These 
curves show that a, < os in the whole range of x variation, hence asymptotics (8) 
are higher than asymptotics (Q), and the second approximation functions for h + 0 are 
always of an oscillating character of period L = (eMiuz - 1)A which vanishes togeth- 
er with the variable h. 

Asymptotics (8) imply that the integrand in formula (6) tends to zero when 3, + 0, 
which shows that the entire integral (6) is convergent, and that I,, (01, exists for any 

x , hence a motion with momentum 



directed along ‘the z -axTs carresponds to perturbation (I) of the fbrm c#‘* Cos 6. 
Thedeweof 1 -+-IzI (0) ozx 3~ isshowzzinPig.3. Since~+f,(0) (0, 

hence the directIon of momentum f, is opposite to the relative shift of the shock 
front along the; z -axis which ia defined by the quantity C,@. This situation is 
not uwsual: the pheriomenon of incctgular shock wave &if% occurs ia asymmetric hyper- 
sonic Bow past a circufar torte 113% 

We point out a further importnat property af the dtnlved solution, namely, that for 
h -+ 0 the perturbed pressure in conformity with (7) also tends to zero. This makes 

it possible to continue the sol~%xt in the region cle to the center, where pressure 
is almoat invar&uit with reqe~t to space vantablct, Such c~~~~ carp be effected 
with allowme for viwsalty and heat conducti~& as was done in [9] for plane-parallel 
mations with -tar& enqy and momentum, 
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